Channel formation properties of synthetic pardaxin and analogues.
نویسندگان
چکیده
Six analogues of teh 33-residue shark repellent neurotoxin pardaxin were synthesized by the solid phase method: [Ala13]pardaxin, [Gly14,Gly15]pardaxin, des[1----9]pardaxin, [N1-succinamido]pardaxin, C33-dihydroxyethylamido]pardaxin, and C33-[diaminoethylamido]pardaxin. The spectroscopic and functional characterizations of the analogues are described. The peptides were characterized spectroscopically by circular dichroism (CD) before and after binding to soybean vesicles. They were characterized functionally by measuring their potential to evoke the dissipation of diffusion potential and calcein release from sonicated unilamellar soybean liposomes, by determining their ability to create single channels in planar bilayers, and by measuring their cytolytic activity on human erythrocytes. The behavior of the analogues modified at the C terminus is similar to that of pardaxin. [N'-succinamido]Pardaxin, however, reveals an increase in alpha-helicity both alone and in the presence of liposomes. It has the same potency as pardaxin to dissipate diffusion potential, to evoke calcein release and to produce single channels in lipid bilayers, but at a slower rate than that of pardaxin. It has more than 70-fold less cytolytic activity than pardaxin. [Ala13] Pardaxin has twice the alpha-helical content than pardaxin, both alone and in the presence of vesicles, yet it has less effect on the diffusion potential and calcein release, and it does not have cytolytic activity on human erythrocytes. Both [Gly14,Gly15]pardaxin and des[1----9]pardaxin are much less potent than pardaxin in all effects. However des[1----9]pardaxin exhibits a slight change in alpha-helicity upon binding to vesicles, whereas [Gly14,Gly15]pardaxin does not. The results support a model in which pardaxin is composed of two putative alpha-helices separated by proline. The N-terminal alpha-helix is important for the insertion of the peptide to the lipid bilayer, and the C-terminal amphiphilic alpha-helix is the ion channel lining segment of pardaxin.
منابع مشابه
Pardaxin, a new pharmacological tool to stimulate the arachidonic acid cascade in PC12 cells.
The effect of Pardaxin, a neurotoxin that induces neurotransmitter release from neurons, on the arachidonic acid (AA) cascade was studied in PC12 cells. Both native and the synthetic Pardaxin selectively stimulated phospholipase A2 (PLA2) activity (measured by [3H]AA release) in the presence as well as in the absence of extracellular calcium. Pardaxin-stimulated PLA2 activity was also evident i...
متن کاملCharacterization of pardaxin-induced dopamine release from pheochromocytoma cells: role of calcium and eicosanoids.
Pardaxin, an excitatory neurotoxin, induced dopamine release from pheochromocytoma (PC12) cells both in the presence and absence of extracellular calcium ([Ca]o). In the presence of extracellular calcium, nifedipine, an L-type calcium channel blocker, did not affect dopamine release, whereas 1,2-bis (2-aminophenoxy) ethane N,N, N'N'-tetra-acetic acid (BAPTA), a chelator of cytosolic calcium, an...
متن کاملIn Vitro and in Vivo Anticancer Activity of Pardaxin against Proliferation and Growth of Oral Squamous Cell Carcinoma.
Pardaxin (H-GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE-OH), a 33-amino-acid polypeptide, is an antimicrobial peptide (AMP) isolated from the marine fish species Pardachirus marmoratus. Pardaxin shows antibacterial and antitumor activities. However, pardaxin-induced inhibition of oral cancer and the mechanism of tumor reduction in buccal pouch carcinogenesis after pardaxin painting remain undetermined. A...
متن کاملIntroducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review
Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resist...
متن کاملStructure and orientation of pardaxin determined by NMR experiments in model membranes.
Pardaxins are a class of ichthyotoxic peptides isolated from fish mucous glands. Pardaxins physically interact with cell membranes by forming pores or voltage-gated ion channels that disrupt cellular functions. Here we report the high-resolution structure of synthetic pardaxin Pa4 in sodium dodecylphosphocholine micelles, as determined by (1)H solution NMR spectroscopy. The peptide adopts a ben...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 33 شماره
صفحات -
تاریخ انتشار 1990